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A B S T R A C T   

Multi-sensor satellite images often show recurrent image slicks in the Baltic Sea. Based on historical reports, 
laboratory experiments, and spectral diagnostics, these image slicks are determined to be caused by pine (Pinus 
sylvestris) pollen aggregations as opposed to surface scums of cyanobacteria or other floating matters. This 
attribution is because the reflectance spectral shapes of these image slicks resemble those of pollen grains, which 
are all different from other floating matters. They all show rapid reflectance increase from ~400 to ~500 nm, 
beyond which the reflectance shape appears to plateau. During the 22-year period of 2000–2021, satellite images 
indicated large amounts of pollen grains in 14 years, with the earliest day being May 10 (in 2000) and the latest 
day being June 16 (in 2006). The longest duration in a single year is 22 days, from May 12 to June 2 of 2018. The 
waters containing pollen grains have expanded significantly in recent years, encompassing nearly the entire 
Baltic Sea. Because pollen grains contain a significant amount of carbon and have distinctive optical properties 
from other particles, these findings have significant implications on carbon sequestration, marine ecology, bio- 
optics, ocean color calibration/validation, and remote sensing of marine debris.   

1. Introduction 

The Baltic Sea is a tideless semi-enclosed marginal sea bordered by 
nine countries: Denmark, Estonia, Finland, Germany, Latvia, Lithuania, 
Poland, Russia, and Sweden, all rich in pine trees and other conifer 
plants (Fig. 1). The southern and southeastern coasts are dominated by 
till materials, while hard-bottom and rocky shores are typical along the 
northern coasts (Schiewer, 2008). Winds are typically strong, with a 50- 
year average of 7.5 m s− 1 and predominant westerly or easterly di-
rections in the southern Baltic (Zhang et al., 2011). The hydrodynamic 
forcing is dominated by wind-driven currents and waves at different 
scales. While blooms of diatoms and cyanobacteria occur annually in 

spring and summer (Kahru et al., 2016, 2020), respectively, allogenic 
materials from terrestrial runoff and wind-induced deposition are also 
abundant, leading to typical Case II waters according to the classical 
definition of Morel and Prieur (1977) (Gordon and Morel, 1983; Antoine 
et al., 2014). 

The biology, ecology, geology, and physics of the Baltic Sea have 
been studied extensively using a variety of means including satellite 
remote sensing (Bradtke, 2021; Ostrowska et al., 2022). These include 
optical characterization to understand how inherent optical properties 
(IOPs, absorption, scattering) and apparent optical properties (AOPs, 
reflectance, light attenuation) are influenced by various forms of par-
ticulate and dissolved matters such as phytoplankton, organic detrital 
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particles, inorganic particles (minerals), and colored dissolved organic 
matter (Berthon and Zibordi, 2010; Kowalczuk et al., 2010; Woźniak 
et al., 2016). These optically active constituents (OACs) are not unique 
to the Baltic Sea, but they are found in nearly all coastal and inland 
waters around the world. 

In addition to the above OACs, several recent studies (Pawlik and 
Ficek, 2016, 2021; Lienart et al., 2022) also reported pine (Pinus syl-
vestris) pollen grains in coastal waters of the southern Baltic Sea (Gdansk 
Bay near Poland) and in a nearshore site near Stockholm University 
(Sweden), respectively (Fig. 1). Pawlik and Ficek (2016 & 2021) further 
used a Laser In-Situ Scattering and Transmissometery (LISST)-100×
instrument to determine the size distribution of pine pollen grains 
collected from Polish coastal waters, whose equivalent diameters were 
found to vary between 29.1 and 78.4 μm. These reports have significant 
implications on optics, remote sensing, ecology, and carbon science at a 
local scale. For example, Lienart et al. (2022) showed that pine pollen in 
the Baltic Sea may serve as a significant food source for local in-
vertebrates. Laboratory measurement of Pinus sylvestris pollen grains 
showed 49.5% carbon and 1.4% nitrogen in pollen dry mass (Rösel et al., 
2012). Therefore, pine pollen may also be a significant carbon source to 
the Baltic Sea at a local scale. 

However, all these studies reported pollen grains only in coastal 
waters (up to 10–20 km from the shoreline). Likewise, an internet search 
resulted in digital photos showing pine pollen grains only in nearshore 
waters or on beaches. Given that the Baltic Sea is surrounded by coun-
tries rich in pine trees and other conifer plants, a natural question is 
whether pollen grains can also be found in other coastal waters or even 
open waters of the Baltic Sea, and, if so, where and when? 

The objective of this work is to search for pollen grain aggregations 
in surface waters of the Baltic Sea using multi-sensor satellite imagery, 
and to document their spatial distributions and temporal changes. 
Through laboratory experiments and image analyses, we hope to answer 
the following questions:  

1) What are the spectral characteristics of pine pollen grains that may 
be used for remote detection?  

2) Where and when can pollen grains be found in the Baltic Sea, and is 
there a temporal trend? 

2. Data and methods 

2.1. Laboratory experiments 

Laboratory experiments were used to measure spectral reflectance of 
pine pollen grains in the following ways. 

First, pine pollen grains were collected by the Pomeranian University 
from male inflorescences directly from pine trees (Pinus sylvestris) of 
Northern Poland (4 km from shore of the Baltic Sea) in May 2018. In the 
laboratory, the pollen gains were carefully mixed with distilled water to 
obtain a suspension of pollen grains on the water surface. The concen-
tration of pollen was high enough to cover the entire surface of the 
container, so the measured reflectance no longer changes with addi-
tional pollen. After 24 h, the pollen sample (including the container) was 
put outdoor under a cloud-free sky (Fig. 2a). The use of 24 h was to make 
pollen moist without decomposition. Reflectance was measured with a 
Satlantic Hyper Spectral Radiometer HyperPro (Fig. 2a) in 136 channels 
in the 350–800 nm spectral range. The HyperPro instrument was 
equipped with two hyperspectral sensors to measure downward irradi-
ance (Ed(λ), W m− 2 nm− 1) and upward radiance (Lu(λ), W m− 2 nm− 1 

sr− 1), respectively. The measurements were repeated automatically 
every 2 s, with their averages being used to calculate the target (i.e., 
pollen) reflectance as R = πLu(λ)/Ed(λ). During the measurement, care 
was taken to avoid instrument self-shading so the instrument itself did 
not block the direct solar beam. Such measured reflectance were 
regarded to represent “pure” pollen that can be used as endmember 
spectra for spectroscopy analysis and for spectral unmixing, as shown 
below. 

Fig. 1. (a) Google Earth map showing the Baltic Sea, with several subregions annotated. The pinned location is where pollen grains have been reported in Lienart 
et al. (2022), and the red dot shows the location where the digital photo in (b) was taken on 22 May 2013. More photos are presented in Fig. S1. (c) Pine pollination in 
Delaware Valley (online picture from https://www.asthmacenter.com/pine-pollen-delaware-valley-may-2017/). The inset photo shows a single pine pollen grain 
under microscope with a scale of about 50 μm (online picture source: https://www.alamy.com), resembling the shape of Mickey Mouse. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 
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Then, to determine whether different types of pine pollens have 
similar spectra, raw pine pollen grains were purchased by the University 
of South Florida from the Canadian Pine Pollen Company Ltd. in January 
2022. These are raw, unpasteurized pollen grains that have been har-
vested from Lodgepole Pine (Pinus contorta) trees from the pristine for-
ests of Western Canada. Unlike most commercial products, these pollen 
grains are unprocessed, i.e., the pollen cell walls are not cracked and 
therefore mimic the conditions in the natural environments. The pollen 
grains were carefully put on water in a black container overnight, from 
which reflectance was measured outdoor under a cloud-free sky 
(Fig. 2b). Reflectance was measured with a Spectral Revolution, Inc. 
SR1901 UV-VIS-NIR (Ultraviolet-Visible-Near infrared) spectrometer 
with an 8◦ FOV fiber optic lens and wavelength range of 325 nm – 1900 
nm (1577 channels). A diffuse-white reflectance standard (an Avian 
Technologies Fluorilon-99 W™ with factory-provided reflectance 
values) placed in the same location as the black container was used as a 
reference. The ratio between the two measurements, after multiplying 
the reflectance of the reference standard, is the pollen grain reflectance 
(R): R = Rr L/Lr, where Rr is the reflectance of the reference standard 
provided by the manufacture, L is the measured radiance from pollen on 
water, and Lr is the measured radiance from the reference standard. 
Similar to the outdoor experiment in Poland, the USF experiment was 
also to determine the pollen reflectance spectra when the water is fully 
covered by pollen so the spectra could be used as endmember spectra to 
perform spectroscopy analysis and to perform spectral unmixing (see 
below). Therefore, as long as pollen grains fill the entire field of view of 
the fiber optic lens, the surface water area or the water volume does not 
impact the measurement because water is fully covered by pollen grains 

and therefore does not contribute to the measured reflectance. 
In both outdoor measurements, the pollen grains are floating on the 

very surface to imitate surface scums as observed from satellites. It is 
actually impossible to make the pollen grains suspended in water unless 
a wind blower is used to mix them into an unstable state – once the 
blower is stopped, the pollen grains start to float on the surface again. 

2.2. Satellite image analyses and spectral diagnostics 

While there are many satellite sensors that can detect the optical 
signals of pollen grains on the water surface, in this study those medium- 
and high-resolution sensors listed in Table 1 were used for varying 
purposes. The medium-resolution sensors include the Visible Infrared 
Imaging Radiometer Suite (VIIRS), the Moderate Resolution Imaging 
Spectroradiometers (MODIS), the Medium Resolution Imaging Spec-
trometer (MERIS), and the Ocean and Land Colour Instrument (OLCI). 
The high-resolution sensors are the MultiSpectral Instrument (MSI) on 
both Sentinel-2A and Sentinel-2B satellites. 

Except for VIIRS, all medium-resolution data were obtained from the 
NASA’s Ocean Biology Distributed Active Archive Center (OB.DAAC, htt 
ps://oceancolor.gsfc.nasa.gov). All high-resolution data were obtained 
from the EUMETSAT Copernicus Open Access Hub. The low-level data 
were processed to generate Rayleigh-corrected reflectance (Rrc(λ), 
dimensionless) using the SeaDAS software package (version 8.0) for the 
medium-resolution data, and using the Acolite software package (Github 
release in April 2021) for the high-resolution data. The use of Rrc(λ) data 
instead of the fully atmospherically corrected remote sensing reflectance 
(Rrs(λ), sr− 1) is because the enhanced near infrared (NIR) reflectance of 

Fig. 2. (a) Outdoor experiments to measure reflectance of pollen on water on 4 June 2018, where pollen grains (Pinus sylvestris) were collected from male in-
florescences directly from pine trees of Northern Poland (4 km from shore of the Baltic Sea) in May 2018; (b) Similar experiment on 17 March 2022, but pollen grains 
were harvested from Lodgepole Pine (Pinus contorta) trees from Western Canada; (c) Reflectance of pollen on water determined from the two experiments (each 
spectral curve is an average of multiple measurements). For both pollen species, there is a sharp increase from 400 to 500 nm, with the fastest changes between 400 
and 460 nm; (d) Reflectance of various types of floating matters, obtained from the literature (Hu, 2021; Qi et al., 2019 & Qi et al., 2020; Lu et al., 2020; Hu et al., 
2022), with pollen spectra overlaid. RNS: red Noctiluca scintillans; BSC: brine shrimp cysts. To facilitate visual comparison of spectral shapes, all spectra are plotted in 
log scale. The SAM values between the mean pollen spectra of (c) and individual pollen spectra are <3o, but between the same mean pollen spectra of (c) and all other 
endmember spectra of (d) are >10o (plastics: 11.6o, pumice: 10.6o, RNS: 25.3o, oil: 19.5o, snot:12.9o, BSC: 31.2o). (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 
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the floating matters often led to erroneous Rrs(λ) data due to atmo-
spheric correction failure. The use of Rrc(λ) data can avoid such prob-
lems through a reflectance differencing technique (Qi and Hu, 2021; Hu 
et al., 2022). 

For visual inspection, the Rrc(λ) data were mapped to an equidistant 
cylindrical projection, and then used to generate false-color Red-Green- 
Blue (FRGB) composite images (Qi et al., 2020). The spectral bands used 
in the FRGB images are 645 nm (red), 859 nm (green), and 469 nm 
(blue) for MODIS, and 671 nm (red), 862 nm (green), and 443 nm (blue) 
for VIIRS. The use of FRGB was to examine whether the NIR band had 
enhanced reflectance due to surface floating matters. Because pine 
pollination season around the Baltic Sea is between May and June, visual 
inspection was applied to images in May–July only from both VIIRS 
FRGB imagery through the NOAA OCView online portal (Mikelsons and 
Wang, 2018) and MODIS FRGB imagery generated for this project. Once 
a suspicious image feature was visually identified, its reflectance spec-
tral shape from the same-day OLCI or MERIS image was examined and 
compared with pine pollen reflectance determined from laboratory 
measurements and with reflectance of other floating matters. Here, the 
use of OLCI or MERIS is because they have more spectral bands between 
400 and 900 nm (with a nominal spatial resolution of 300 m) than other 
multi-band sensors, and therefore are more suitable for spectral di-
agnostics (e.g., Qi et al., 2020). Furthermore, MSI images corresponding 
to the image features found in medium-resolution images were also 
examined for their spectral shapes in a similar fashion as those with 
OLCI and MERIS. For MSI, because all spectral bands were first resam-
pled to 10 m, a 5 × 5 pixel averaging was used to minimize the impact of 
mixed band resolutions on the spectral shapes (Hu, 2021, 2022). 

The steps to examine spectral shapes of floating matters from satel-
lite images have been outlined in Hu et al. (2022), where the subject is 
sea snot. The same principles and steps also apply to pollen grains in this 
study. Briefly, because reflectance of pollen grains with full pixel 
coverage is much higher than water reflectance for most visible and NIR 
wavelengths (see experimental results below) and because the subpixel 
coverage pollen grains can be very small (e.g., < 10% of a pixel), a 
spectral differencing technique was used to examine the spectral shape 
of pixels containing floating matter (in this case, pollen grains): 

ΔRrc(λ) = RT
rc(λ)–RW

rc(λ)
=

(
RT(λ) + Ra(λ)

)
−
(
RW(λ) + Ra(λ)

)

= RT(λ) − RW(λ)
=

[
χRFM(λ) + (1 − χ)RW(λ)

]
− RW(λ)

= χ
(
RFM(λ) − RW(λ)

)

≈ χRFM(λ)
[
assuming RW(λ) << RFM(λ)

]
.

Here, ΔRrc(λ) is the difference between the target pixel (superscript 
“T”) and nearby water pixel (superscript “W”), χ (0.0%–100%) is the 
subpixel fraction of floating matter (FM), RFM(λ) is the floating matter 
surface reflectance at χ = 100% (i.e., endmember reflectance), RW(λ) is 
the water surface reflectance from pixels nearby the floating matter. 
Ra(λ) represents atmospheric reflectance due to aerosol scattering, 

which is assumed to be the same between the target pixel and nearby 
water pixel. With RW(λ) << RFM(λ), the spectral shape of ΔRrc(λ) can be 
used to approximate RFM(λ), while their spectral magnitudes differ by an 
unknown factor of χ that can be estimated as 

χ = ΔRrc(NIR)
/

RFM(NIR). (2) 

This is because the maximum reflectance contrast between floating 
matter and water is in the NIR wavelengths. RFM(NIR) can be estimated 
from laboratory experiments, or determined from image pixels as the 
average of maximum ΔRrc(NIR) values. For sea snot, RFM(NIR) was 
estimated to be 0.3. For pollen grains, the experimental results below 
also indicate that 0.3 is a reasonable assumption. 

To determine whether the floating matter determined from the 
image analysis and spectral diagnostics is likely pollen grain, the spec-
tral shape of ΔRrc(λ) was compared with the spectral shape of pollen 
grains determined from laboratory experiments and with other floating 
matters that may also be found in marine or other water environments. 
The comparison was through both visual inspection and a spectral angle 
mapper index (SAM) (Kruse et al., 1993): 

SAM (degrees) = cos− 1
[(∑

xiyi

)/( ̅̅̅̅̅̅̅̅̅̅̅̅∑
x2

i

√ ̅̅̅̅̅̅̅̅̅̅̅̅∑
y2

i

√ )]

. (3) 

Here, the subscript i is for band number, and x and y represent two 
spectral vectors from ΔRrc(λ) of a pixel of interest and a spectral end-
member determined from the experiment or obtained from the litera-
ture. From this definition, SAM depends only on the spectral shape as 
opposed to the spectral magnitude, with SAM = 0o for two identical 
spectral shapes and SAM = 90o for two completely different spectral 
shapes. For the former case, the two spectra would appear parallel to 
each other if plotted in logarithmic space. 

2.3. Delineation of pollen rich water 

From the above spectral diagnostics, once the image features were 
determined to contain pollen grains, the waters bounding these features 
were manually delineated. The method was applied to individual images 
where pollen features were found, and all water areas within a calendar 
year were combined to determine the approximate cumulative footprint 
of pollen-rich waters for that year. Ultimately, a method based on 
computer artificial intelligence may be developed to delineate such 
image features automatically and objectively (e.g., Qi et al., 2021), but 
the purpose here was to determine the boundary of water bodies 
encompassing the image features as opposed to the boundary of image 
features themselves. Therefore, simple manual delineation was deemed 
sufficient for this purpose and for the purpose of estimating the 
approximate cumulative footprint of pollen-rich waters. Furthermore, 
for a limited number of selected regions with clear sky conditions, a 
simple gradient method was used to delineate the image slicks whose 
pixels were determined (through spectral diagnostics) to contain pollen 
grains. For such image pixels, the subpixel coverage χ of each pollen- 

Table 1 
Satellite sensors and their characteristics and usage in this study. For convenience, they are separated to medium-resolution and high-resolution sensors. SD: spectral 
diagnostics.  

Sensor Duration Equatorial Revisit Resolution Data Products Purpose Data Source 

Medium resolution 
VIIRS/SNPP 2011 – present 1 day 375–750 m FRGB Online browse NOAA OCView 
MODIS/T 2000 – present 1 day 250–1000 m FRGB, Rrc Time series NASA OB.DAAC 
MODIS/A 2002 – present 1 day 250–1000 m FRGB, Rrc Time series NASA OB.DAAC 
MERIS 2002–2012 3 days 300 m FRGB, Rrc SD NASA OB.DAAC 
OLCI/3A 2016 – present 3 days 300 m FRGB, Rrc SD NASA OB.DAAC 
OLCI/3B 2018 – present 3 days 300 m FRGB, Rrc SD NASA OB.DAAC  

High resolution 
MSI/2A 2015 – present 10 days 10–60 m FRGB, Rrc Detailed view + SD EUMETSAT 
MSI/2B 2017 – present 10 days 10–60 m FRGB, Rrc Detailed view + SD EUMETSAT  
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containing pixel was estimated using Eq. (3), and their arithmetic 
average (including the pollen-free pixels) was used to represent the 
mean χ for the selected water regions. The “pure” pollen coverage (in 
km2) was estimated to be a product of mean χ and the area of the pollen- 
rich waters. 

3. Results 

3.1. Pine pollen reflectance from outdoor experiments 

Fig. 2c shows the reflectance from dense pine pollen grains in the 
experimental settings of Figs. 2a & 2b. From the multiple measurements 
of the two types of pollens, the reflectance shows near-identical spectral 
shapes, which can be characterized as: 1) lack of narrow-band features 
(i.e., no “sudden” changes in any wavelengths); 2) a sharp increase from 
~400 to ~500 nm, after which the spectra become rather flat. In 
addition, reflectance between 700 and 800 nm is around 0.3. 

Such characteristics are relatively unique among other floating 
matters that have also been reported in the aquatic environment, for 
example, macroplastics, sea snot, pumice rafts, brine shrimp cysts 
(BSCs), red Nocticula scintillans (RNS), and oil emulsions (Fig. 2d). 
Although these latter floating matters do not show any narrow-band 
features either, neither appears to show both characteristics identified 
above for pollen grains. Such a difference between pollen grains and 
other floating matters may be used to discriminate pollen grains from 
image features, as shown below. Note that reflectance spectra of many 
floating algae and other floating vegetation are not included in Fig. 2d 
because their common narrow-band feature around 670 nm (due to 
pigment absorption) makes them easily distinguishable from pollen 
reflectance. 

3.2. Image and spectral features determined from multi-band imagery 

Visual inspection of the VIIRS FRGB imagery through the NOAA 
OCView online portal showed extensive image slicks in many images 
between May and June of 2012–2021. While it is impossible to present 

all images containing such slicks, Fig. 3 shows two examples in May 
2018 and June 2021, respectively, where the image slicks are revealed 
clearly. Visual inspection of MODIS FRGB imagery showed similar fea-
tures between May and June of 2000–2021 for most years. While the 
spatial shapes of these features can be well explained by sub-mesoscale 
dynamics (e.g., eddies of 0.1–10 km in size) (Onken et al., 2020; 
Chrysagi et al., 2021), what type of floating matters can result in such 
image slicks? 

Corresponding to the two VIIRS images shown in Fig. 3, the OLCI 
images in Figs. 4a & 4b were used to analyze the spectral shapes of the 
image slicks, where ΔRrc spectra from 100 randomly selected pixels of 
the image slicks from each of the two images are shown in the inset 
figures of Figs. 4a & 4b. To show more details, ΔRrc spectra from three of 
such pixels (marked as “1”, “2”, “3” in Figs. 4a & 4b) are shown in 
Figs. 4c & 4d, respectively. Despite their differences in reflectance 
magnitudes (corresponding to subpixel coverage χ), their spectral 
shapes are nearly identical, indicating the same type of floating matter. 
The lack of spectral features suggests lack of pigments. Comparison 
between these ΔRrc(λ) spectra and the ΔRrc(λ) spectra of other floating 
matters (including pollen grains, see Figs. 2c & 2d) showed the lowest 
SAM values with pollen grains of the Baltic origin (5.9 ± 0.9o for Fig. 4c, 
6.6 ± 2.6o for Fig. 4d, see Table 2). Visually, the spectral shapes in 
Figs. 4c & 4d and in the inset figures all show sharp increases from the 
412-nm to the 510-nm band, after which their reflectance appears rather 
flat. All these results suggest that the image slicks of Figs. 4a & 4b are 
likely due to pollen grain aggregations. 

Even without the SAM analysis, knowledge of regional oceanography 
can also be used to rule out some other possibilities. For example, ma-
rine debris and sea snot can be both ruled out because the former could 
not reach such a large scale (for otherwise there would be extensive 
news coverage) and sea snot events typically last much longer (e.g., 
March – June 2021 in the Sea of Marmara, Hu et al., 2022). Therefore, 
considering that pine pollens are often found in the southern Baltic Sea 
(including the Gdansk Bay, Pawlik and Ficek, 2016, 2021, also see 
digital photos in Fig. S1), aggregation of pollen grains in surface waters 
is the most likely reason to explain the image slicks. This argument is 

Fig. 3. VIIRS FRGB images on 16 May 2018 (a) and 5 June 2021 (b) showing surface slicks in the southern Baltic Sea (54.8357oN, 18–21◦E) and northern Baltic Sea 
(57.83–60oN, 19–22◦E), respectively. The locations of the two regions are shown in the inset figures. The images were taken as screenshots from the NOAA OCView 
online portal, and then color stretched to highlight the surface features. 
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Fig. 4. OLCI/3A (a) and OLCI/3B (b) FRGB images on 16 May 2018 (08:51 GMT) and 5 June 2021 (09:19 GMT) showing surface slicks in the southern Baltic Sea 
(54.3–57oN, 18–21◦E) and northern Baltic Sea (57.3–60oN, 19–22◦E), respectively. These images correspond to those shown in Figs. 3a & 3b, respectively, but 
spectral shapes of 100 randomly selected pixels from the slick features are illustrated in the inset figures, and from three locations (marked as “1”, “2” “3”) are shown 
in (c) and (d), respectively. Solid lines and vertical bars represent mean and 1 standard deviation from 3 × 3 pixels, respectively. The dashed rectangular box in (a) 
shows the location of the MSI image, displayed in Fig. 5. 

Table 2 
SAM values between image features and floating matter endmembers. For OLCI, SAM was calculated using wavelengths of 412, 442, 490, 510, 560, 620, and 665 nm. 
For MSI, SAM was calculated using wavelengths of 443, 492, 560, 665 nm. Lower SAM values (bold font) indicate higher similarity. Here, “Plastics” refer to the 
macroplastic materials in Hu (2021), “BSCs” refers to brine shrimp cysts (Qi et al., 2020), and “RNS” refers to red Noctiluca scintillans. Note that the image features in 
the last row (OLCI image on 9 June 2020) represent cyanobacterial surface scums (Fig. 7).  

Image features from Floating matter endmember 

Poland pollen Canadian pollen Sea snot Plastics Pumice raft BSCs RNS Oil emulsion 

OLCI, 5/16/2018, Fig. 4a, Baltic 5.9 ± 0.9 7.8 ± 1.0 13.8 ± 3.7 12.0 ± 3.7 6.3 ± 2.3 14.0 ± 1.4 24.6 ± 2.4 13.1 ± 2.6 
OLCI, 6/5/2021, Fig. 4b, Baltic 6.6 ± 2.6 6.9 ± 2.4 9.7 ± 2.3 8.1 ± 2.3 10.7 ± 1.2 16.8 ± 0.5 29.2 ± 0.8 17.9 ± 1.1 
OLCI, 6/6/2021, Fig. 8, Swedish lakes 3.5 ± 0.7 5.8 ± 0.9 15.3 ± 1.7 13.8 ± 1.7 6.8 ± 0.5 15.7 ± 0.4 25.4 ± 1.2 14.0 ± 0.9 
MSI, 5/16/2018, Fig. 5, Baltic 4.1 ± 1.9 6.3 ± 2.4 14.1 ± 1.9 12.4 ± 1.8 7.7 ± 2.0 14.6 ± 1.7 23.7 ± 2.6 13.8 ± 2.5 
MSI, 6/21/2018, Fig. 9, Temagami 5.1 ± 1.4 5.9 ± 2.3 16.1 ± 1.6 14.9 ± 1.6 10.9 ± 1.3 19.1 ± 1.2 26.6 ± 2.1 17.2 ± 1.9 
OLCI, 6/9/2020, Fig. 7, Baltic 22.1 ± 1.3 22.6 ± 1.5 21.2 ± 4.4 21.8 ± 3.8 22.2 ± 1.7 29.4 ± 3.0 33.3 ± 3.1 27.3 ± 2.1  
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further reinforced by the more detailed view in Fig. 5 as well as other 
examples shown below. 

Fig. 5a shows more detailed view of the same image features of 
Fig. 4a, but at a much higher resolution of 10 m. At this resolution, the 
spectral shapes of selected pixels show similar characteristics (inset 
figure of Fig. 5a) as their counterparts in the 300-m resolution OLCI 
image (Figs. 4a & 4c), but with more detailed slick structures revealed in 
the image. For example, along the major slicks found in the 300-m 
resolution OLCI image (Fig. 4a), there are smaller feather-like fea-
tures, often parallel to each other in the NEE-SWW direction that appear 
to be the result of wind-driven Langmuir circulation (Fig. 5a). While the 
orientations of the major slicks are believed to be dominated by surface 
currents (NW – SE direction in the case of Fig. 5a), the directions of 
smaller features along the major slicks are likely driven by the easterly 
and northeasterly winds (Fig. S2). For this MSI image, digital photos 
collected from a ship just one day earlier (Fig. 5b & 5c, note the optical 
profiling package in the photo) provided a direct confirmation of pollen 
grains on the water surface in the location pointed by the red arrow in 
Fig. 5a. More digital photos are provided in Fig. S1 to show the 
appearance of pollen in water. 

3.3. Pollen water footprint in the Baltic Sea 

While OLCI provides spectral diagnostics of the image features at 
300-m resolution, more images are available from MODIS observations. 
Inspection of the MODIS FRGB images of 2000–2021 showed the same 

image features as in Figs. 3 & 4, whose spectral shapes from the corre-
sponding MERIS or OLCI images were all similar to those shown in 
Figs. 4c & 4d. Therefore, these image features can be inferred to be 
caused by pollen grain aggregations. For illustration purpose, several 
additional examples are provided in the supplemental figures (Figs. S3 – 
S6). These examples clearly show that pollen aggregations can be found 
nearly everywhere in the Baltic Sea. Although the starting and ending 
days when pollen aggregations were observed in an individual year 
varied due to availability of cloud free images, during the 22-year 
period, the earliest day showing pollen aggregations is May 10 (in 
2000) and the latest day is June 16 (in 2006). In 2018, pollen aggre-
gations were found between May 12 and June 2, a period of 22 days (the 
longest duration identified in this time series). 

The use of MODIS also showed approximate pollen distributions 
starting from 2000, defined as the cumulative footprint of pollen-rich 
waters (Fig. 6). Although these are only crude estimates from the sim-
ple delineation, they do show interesting spatial patterns in individual 
years and changes across different years as well as an apparent 
increasing trend. For example, during the first half of this period 
(2000− 2010), pollen aggregations were found in 7 years, but mostly in 
relatively small regions (e.g., around Gotland island) except during 2010 
when pollen aggregations were found along the east coast of the Baltic 
Sea. During the second half of this period (2011− 2021), pollen aggre-
gations were also found in 7 years, but in most of these years their 
footprints are much larger than those during the first half, especially in 
the later years of 2018 and 2021 when most of the Baltic Sea waters were 

Fig. 5. (a) MSI FRGB on 16 May 2018 (10:00 GMT) 
showing surface slicks in the southern Baltic Sea 
(region outlined in red in Fig. 4a). The MSI image was 
collected on the same day as the OLCI image in 
Fig. 4a. The spectral shapes of randomly selected 
pixels (red dots) are shown in the inset figure, where 
solid lines and vertical bars represent mean and 
standard deviation from 5 × 5 10-m resolution pixels, 
respectively. The blue dashed lines indicate di-
rections of major slicks, while the green dashed ar-
rows indicate wind directions. The red arrow points 
to a location where a digital photo was taken on 15 
May 2018, shown in (b). In this photo, pollen grains 
are visible to human eyes, and the optical profiling 
package has an approximate size of 0.5 m. Another 
photo in a nearby location was collected in May 
2013, shown in (c). More digital photos are provided 
in Fig. S1. (For interpretation of the references to 
color in this figure legend, the reader is referred to 
the web version of this article.)   
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found to contain pollen grains. In all years combined, the cumulative 
footprint shows that pollen aggregations can be found nearly every-
where in the Baltic Sea (Fig. 6 last panel). 

4. Discussion 

4.1. Is it really pollen? 

As shown in Figs. 2b&2c, although there are some common char-
acteristics between pollen and other non-algae floating matters in their 
spectral shapes (e.g., lack of narrow-band features, near monotonic in-
crease from the blue to the red wavelengths), the sharp increase from 
~400 nm to ~500 nm appears to be a unique feature in pollen reflec-
tance, thus can be used for spectral discrimination. Indeed, the SAM- 
based analysis indicates lower SAM values between the image features 
and pollen grains than those between the image features and other 
floating matters (Table 2), suggesting the possibility of pollen grains. 
The limited field surveys also confirmed the presence of large amount of 
pollen grains on the water surface (digital photos of Fig. 5b & 5c, and 
digital photos in Fig. S1). Sea snot and marine debris can be easily ruled 
out also because they do not occur at this extensive scale in such a short 
period. Then, for the Baltic Sea, without the spectral diagnostics, the 

only other possible floating matter is the annually occurring cyano-
bacterial blooms (Kahru et al., 2016, 2020), which are known to form 
patchy surface scums in the Baltic Sea (Reinart and Kutser, 2006). Fig. 7 
shows one such case, where surface slicks are found in the OLCI FRGB 
image. However, the image slicks have a greenish color due to the red- 
edge reflectance, and the ΔRrc(λ) spectral shapes from several randomly 
selected slicks (annotated as “1”, “2”, “3) show a typical absorption 
feature around 670 nm, a red-edge reflectance in the NIR, and a local 
reflectance peak in the green wavelength (Fig. 7). These are dramati-
cally different from the spectral shapes of pollen grain aggregations, but 
they show typical spectral shapes of cyanobacterial scums in the Baltic 
Sea (Reinart and Kutser, 2006). The SAM values between these image 
features and pollen endmember spectra are about 22o (Table 2 last row). 
Thus, the use of spectral diagnostics can rule out the possibility of cya-
nobacterial surface scums. Note that although cyanobacterial blooms in 
the Baltic Sea generally occur in the summer while pollen aggregations 
are mostly found in late spring, there appears to be an overlapping time 
window to make it difficult to make inference using imaging time alone. 
For the case shown in Fig. 7, the image was collected on June 9, within 
the time window of images with pollen features (May 10 (of 2000) – 
June 16 (of 2006)). 

Other than the spectroscopy-based arguments, several other reasons 

Fig. 6. Cumulative footprint of waters where surface slicks of pollen grains were found from MODIS observations. These maps cover a region of 54-60oN, 14–23◦E. 
The water area (in km2) rich in pollen is annotated on the bottom right corner of each panel. The last panel represents all years combined. 
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also suggest that the image slicks in Figs. 3-5 and Figs. S3-S6 are due to 
pollen aggregations. 

First, pollen aggregations have been reported in the month of May in 
both southern Baltic Sea (around Gdansk Bay of Poland, Pawlik and 
Ficek, 2016, 2021) and western Baltic Sea (near Stockholm University of 
Sweden, Lienart et al., 2022) (Fig. 1). It is a logical inference that pollen 
grains may be found in other regions of the Baltic Sea in the same month, 
as shown here. In fact, sediment samples from several sediment coring 
sites of the Baltic Sea all indicate pollen deposits, with pine pollen 
dominating the pollen counts (Miettinen et al., 2002; Van Wirdum et al., 
2019). The results here suggest that pollen grains are not limited to those 
sites, but can be found in sediment samples nearly everywhere in the 
Baltic Sea. 

Then, if this is the case, similar pollen grain aggregations should also 
occur in nearby lakes and other waters in the same months as they are 
also surrounded by pine trees (mostly Pinus sylvestris). For example, the 
Gulf of Bothnia (60–65.9oN, ~45,174 mile2) and the Gulf of Finland 
(23–30.2◦E, 11,583 mile2) are the northernmost and easternmost arms 
of the Baltic Sea, respectively (Fig. 1). Although not shown in this paper 
for brevity, VIIRS images on 8 and 9 June 2021 showed surface slicks up 

to 65oN in the Gulf of Bothnia (Fig. S7) and up to 28◦E in the Gulf of 
Finland (Fig. S8), which were confirmed to have the same ΔRrc(λ) 
spectral shapes as those from pollen aggregations. Likewise, the two 
largest lakes in Sweden (west of the Baltic Sea), Lake Vänern and Lake 
Vättern, were also found to show image slicks that appear like pollen 
aggregations (Fig. 8, Table 2). 

Lastly, using the same logic, lakes in other regions that are sur-
rounded by pine trees should also show similar slicks in satellite imagery 
during the pollination months. A search of satellite images confirmed 
this speculation, with an example shown in Fig. 9 for Lake Temagami of 
Canada. Not only do the image slicks of Fig. 9a have similar spectral 
shapes as those of pollen aggregations (Fig. 9b), but digital photos taken 
from the lake on the same day as well as the online report showing these 
digital photos confirmed the presence of pollen aggregations (Fig. 9c). 

Thus, all these arguments and evidence suggest that the image slicks 
cannot be due to other reasons than pine pollen aggregations. 

4.2. Requirements on spectral and spatial resolutions 

Although pollen has spectral shapes dramatically different from all 

Fig. 7. OLCI FRGB image on 9 June 2020 (09:17 GMT) showing surface slicks in the southern Baltic Sea. The spectral shapes of several randomly selected image 
slicks (annotated as “1”, “2”, “3”, inset figure) indicate cyanobacterial surface scums instead of pollen grains. The SAM values between these features and pollen 
endmember spectra as listed in Table 2 (last row). 
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other known floating matters, most of these reflectance spectra show 
general increasing patterns from the blue to the red without narrow- 
band features (Figs. 2c & 2d), thus raising the question of what spec-
tral resolution is required to discern their differences. From the spectral 
comparison, most of the difference between pollen and other floating 
matters occurs between 400 and 500 nm. Therefore, as long as there are 
two spectral bands from 400 nm to 500 nm (to show the sharp increase) 
and two more spectral bands beyond 500 nm (to show the plateaued 
reflectance shape), the spectral resolution should be sufficient to 
discriminate pollen aggregations from other floating matters. This is 
why all sensors used in this study are adequate for spectral discrimina-
tion, and this is also explained in Table 2 caption where only 4 MSI 
bands were used in calculating the SAM values. 

Similar to spectral resolution, sufficient spatial resolution is required 
to detect the small pollen aggregations on the water surface (e.g., Fig. 
S1), which are often smaller than a pixel size. In this case, full pixel 
coverage is not required for either detection of presence/absence or 
spectral discrimination of pollen against other floating matters. 
Assuming that pixels with full coverage (χ =100%) of floating matter 
have reflectance of ~0.3 in the NIR, the lower detection limit and 
discrimination limit, in terms of χ, depend only on the sensor’s signal-to- 
noise ratios (SNRs) that determine the noise-equivalent reflectance 
measured under typical ocean conditions (Qi and Hu, 2021). The 

physical detection limits, in terms of meters, are simply products of χ 
and the pixel size. Based on the analysis of SNRs and noise propagation, 
Qi and Hu (2021) determined that the spectral differencing technique 
used here can detect the presence of floating matters down to 2% of the 
MSI pixel size, and can discriminate floating matter type down to 6% of 
the MSI pixel size even in very turbid waters. This is because, regardless 
of the magnitude of χ (see Eq. 1), the spectral shapes of the image fea-
tures in Figs. 5 & 9 are nearly identical to those of pollen aggregations 
(Table 2), and in spectral discrimination the shape indicates the type of 
floating matter while the magnitude indicates the magnitude of χ (Eq. 
1). In Fig. 5, the NIR reflectance of the 3rd curve is about 0.03, sug-
gesting χ ~ 10% (assuming 0.3 corresponds to χ = 100%, see Fig. 2c). In 
Fig. 9b, the NIR reflectance of the third curve is about 0.004, suggesting 
χ ~ 1.3%. This means that in the 10-m resolution MSI images, elongated 
image slicks of pollen grains can be detected and discriminated without 
ambiguity as long as the equivalent slick width in the field is >1.3% ×
10 m = 13 cm. 

This principle has been used to detect and discriminate Sargassum 
and Ulva (Fig. 7 of Qi and Hu, 2021), sea snot (Fig. 3 of Hu et al., 2022), 
and driftwood (Fig. 7a of Hu, 2022) without ambiguity even though 
these floating matters are only a few percent of a pixel size. 

Fig. 8. OLCI FRGB image on 6 June 2021 (09:32 GMT) showing surface slicks in Lake Vänern and Lake Vättern (Sweden), respectively, where the spectral shapes of 
randomly selected image slicks (annotated as “1”, “2”, “3”) indicate possible pollen aggregation on the surface (inset figure). The SAM values between these features 
and pollen endmember spectra are listed in Table 2. 
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4.3. Implications for ecology and carbon sequestration 

The importance of pine pollen as a carbon source to invertebrates 
and as a terrestrial particle source to influence optical properties of the 
Baltic Sea have been demonstrated through case studies (Pawlik and 
Ficek, 2016, 2021; Lienart et al., 2022). Of the 22 years examined, 14 
years showed pollen grains in surface waters of the Baltic Sea. Because 
the number of cloud-free images during the pollination season is similar 
in every year, it is unclear why pollen grains were missing in certain 
years. Without further investigations, we can only speculate that winds 
and precipitation conditions in those years were not favorable for long- 
distance transport of these fine particles. Nevertheless, in 2018 and 
2021, pollen grains were found in nearly the entire Baltic Sea. The 
temporal trend shown in Fig. 6, although qualitative by its nature, 
suggests that its importance may have increased in the past decade for 
the Baltic Sea and, after logical extension, possibly for global water 
bodies under similar pollen influence. Indeed, the increased pollen 
coverage is in line with several earlier studies which showed more pollen 
production under higher CO2 concentration and higher temperature 
(Ziska and Caulfield, 2000; Albertine et al., 2014), with pollination 
season becoming earlier and longer in North America and increases in 
tree pollens being more prominent than in grass or weed pollen 
(Anderegg et al., 2021). The increased pollen coverage is also in line 
with Kahru et al. (2016), where more surface incoming shortwave 
irradiance and warmer waters were found in recent years than in the 
1980s. On the other hand, while pine pollen powder has been used 
widely as a nutrition source for humans and they are more ubiquitous 
than previously thought, their impacts on ocean (and lake) ecology, bio- 
optical properties, primary production, and carbon cycling are all 
understudied. 

Such a lack of study hinders direct comparison between pollen and 
phytoplankton on their contribution to carbon sequestration. 

Nevertheless, with some assumptions and simple calculations, a first- 
order comparison is provided below to present a context for pollen as 
a terrestrial carbon source. 

Assuming ΔRrc(859) = 0.3 for “pure” pollen within a pixel (i.e., 
endmember reflectance), the pollen density on the water surface within 
several small regions of the MODIS image on 7 June 2021 was estimated 
to be ~0.001 (or 0.1%). Ideally, such estimates should be derived from 
all image features of every image. However, because of the lack of an 
algorithm to extract these features automatically, 0.1% was assumed to 
represent the typical pollen density in pollen rich waters. Then, 
assuming 0.2 kg m− 2 density of pollen grains when the surface is fully 
covered by pollen, such a mean density of 0.1% corresponds to 0.2 g 
m− 2. The total amount of pollen corresponding to the 2018 case 
(130,000 km2) is calculated as: Mpollen = 130,000 × 106 × 0.2 × 0.001 
= 26,000 tons of pollen. According to an online report (https://www. 
snopes.com/fact-check/pollen-cloud-tree/), a pollen tree “can produce 
up to 5 lbs. (2.2 kilograms) of pollen in just a few weeks.” Assuming 1 kg 
per tree and 500 trees per acre, it would require only ~210 km2 pine 
forest, a tiny portion of all pine forests around the Baltic Sea, to produce 
26,000 tons of pollen. 

For this much pollen on water, assuming 49.5% carbon content 
(Rösel et al., 2012), the mean pollen carbon density in pollen-rich waters 
is 0.2 × 49.5% = 0.099 g m− 2, with the total amount of pollen carbon 
estimated to be 12,870 tons. Note that unlike recycled carbon within the 
water column, the pollen carbon represents “new carbon” to the Baltic 
Sea. The question is, is this new carbon significant compared to carbon 
sequestration by phytoplankton? With a mean net primary production 
(NPP) of 3 g carbon day− 1 m− 2 (based on MODIS estimates using a 
community accepted model, Behrenfeld and Falkowski, 1997) and 
assuming 0.3% of this amount can reach the sea floor and be perma-
nently buried (Muller-Karger et al., 2005), carbon sequestration of 
phytoplankton is about 0.009 g day− 1 m− 2. Assuming 80% of pollen 

Fig. 9. (a) MSI FRGB image on 21 June 2018 showing surface slicks in Lake Temagami, Canada, where the spectral shapes of randomly selected image slicks 
(annotated as “1”, “2”, “3”) indicate possible pollen aggregation on the water surface (b). The SAM values between these features and pollen endmember spectra are 
listed in Table 2. (c) Digital photo taken from Lake Temagami on 21 June 2018 showing pine pollen on the surface (photo credit: Ron Miller of http://Ottertooth. 
com). More photos and descriptions of the annual pollen events in this lake can be found at http://www.ottertooth.com/Temagami/Seasons/summer/2017summe 
r-01.htm. 
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particles are eventually buried on the sea floor and the estimated pollen 
amount represents the entire pollination season, the buried pollen is 
0.079 g m− 2, corresponding to 9 days of phytoplankton carbon 
sequestration. If multiple pollen deposition events occur in one season 
with each contributing similar amounts, the buried pollen may be 
equivalent to 10–20 days of phytoplankton carbon sequestration. We 
acknowledge that due to the many assumptions used here, such esti-
mates are subject to large uncertainties. For example, there is no in-
formation on the proportion of pollen particles that are eventually 
buried before they are consumed by bacteria or invertebrates, which 
also points to the need of more field-based studies. Nevertheless, these 
estimates are expected to serve as a first order reference in the context of 
carbon sequestration. 

The estimations of pollen amount were based only on the observed 
pollen-on-water features. If sub-surface pollen grains are included, the 
estimates will be higher. For example, Fig. 10 shows that, among the 
surface slicks of pollen grain aggregations in the southwest Baltic Sea, 
there are subtle slick features that show different color shades (in this 
case, pinkish color). Comparison between the spectral shapes of these 
subtle features and the nearby surface slicks (inset figure of Fig. 10) 
shows a monotonic reflectance decrease from the green to the NIR bands 
in the former, indicating the same type of floating matter but that the 
floating matter is submersed in water. This is because the monotonic 
increase in light attenuation can cause monotonic decrease in reflec-
tance. Assuming the light attenuation is dominated by water molecules 
in the NIR wavelengths, the submersed depth in this case was estimated 
to be ~0.2 m. Inspection of other images showed similar image features 
that appear to be submersed pollen grain aggregations, but they were 
discarded in the pollen estimates, suggesting that the pollen estimates 
are conservative and further reinforcing the role of pollens in carbon 
sequestration and ecology. On the other hand, these subsurface features 
also suggest more work in developing improved algorithms to detect and 

quantify them. 

4.4. Other implications 

As a proof-of-concept, this is the first study to demonstrate that 
pollen on water can be detected and possibly quantified from space. 
Much remains to be done, however. For example, an immediate follow- 
on work may be developing robust algorithms to quantify pollen density 
on the water surface and pollen concentration in the water column, 
which requires targeted field work in the near future. Likewise, it is 
currently unknown what caused the widespread pollen in the entire 
Baltic Sea: terrestrial discharge, atmospheric deposition (e.g., Sugita, 
1993; Bunting and Middleton, 2005), or both. In this regard, targeted 
models may be developed to explain the widespread patterns. 

Before such algorithms or models are developed and validated, the 
slick patterns revealed in the satellite images may be used to study 
submesoscale ocean dynamics. Previously, such dynamics are usually 
studied with numerical simulations (Onken et al., 2020; Chrysagi et al., 
2021) due to lack of observing techniques. The spatial patterns of the 
image slicks (Figs. 3 & 4) can be well explained by the submesoscale 
dynamics and, in turn, may be used to validate numerical models in their 
estimated frontal density, among other parameters. 

The findings of this study are also relevant to satellite ocean color 
vicarious calibration and product validation (Zibordi et al., 2009; Mélin 
and Zibordi, 2010). Because vicarious calibration requires spatially 
homogeneous waters around the calibration site, the presence of pollen 
grains may violate this assumption. Likewise, validation of ocean color 
data products often uses 3 × 3 image pixels to compare with a point 
measurement in the field, with implicit assumption of homogeneous 
waters within the pixels. The patchy aggregations of pollen grains may 
bring additional uncertainties in such validations. Therefore, interpre-
tation of both field and satellite data during the pollination season re-
quires extra caution. 

Last but not least, the spectral shapes of pollen on water and the 
findings of this study have significant implications on remote detection 
of marine litter (i.e., marine debris, including plastics). Similar to sea 
snot (Hu et al., 2022), pollen aggregations on the water surface may 
present another confusion factor for remote detection of marine debris. 
This is because they all have similar spectral shapes of featureless 
reflectance that increases from the blue to the green and red wave-
lengths. Although the sharp increases from 400 nm to 500 nm only 
appear in pollen reflectance from laboratory measurements (Figs. 2c & 
2d), due to light attenuations and other effects, such sharp increases may 
be compromised in satellite-derived spectra (Figs. 4c & 4d), making it 
difficult to differentiate pollen grains from marine debris using spec-
troscopy alone. For example, for the image slicks of Fig. 4b, although 
their SAM values with pollen grains (6.6 ± 2.6o) are lower than those 
with macroplastics (8.1 ± 2.3o), statistically their difference is not sig-
nificant. In such cases, ancillary information such as the occurrence 
time, location, scale, and duration may be used to make educated 
inference. As such, in the case of the Baltic Sea, pollen aggregations were 
not found outside the time window of May 10 – June 16. In the case of 
sea snot events in the Marmara Sea, sea snot features were not found 
from satellite imagery outside the time window of late spring – early 
summer. Nevertheless, pollen on water represents another factor to 
consider when remote detection of marine debris is attempted. 

5. Conclusion 

This is perhaps the first report that shows extensive distributions of 
pollen grains in any marginal seas. A key finding is that, in certain years 
between May 10 and June 16, pine (Pinus sylvestris) pollen grains can be 
found in surface waters nearly everywhere in the Baltic Sea, well beyond 
nearshore or coastal waters. Such a discovery is attributed to the 
frequent multi-spectral satellite observations and the relatively unique 
reflectance spectral shapes of pine pollen grains, which are confirmed by 

Fig. 10. OLCI FRGB image on 23 May 2018 (09:10 GMT) showing surface 
slicks in the southwest of the Baltic Sea (54–57oN, 14–19◦E). The spectral 
shapes of the slicks appear like pollen grains. The inset figure shows two spectra 
from image slicks that appear to be on the surface and below surface (red and 
green in the inset zoom-in image), respectively. All satellite-based observations 
in this study were based on the former cases (i.e., surface scums of pollen 
grains), although the latter subsurface cases were also occasionally observed. 
(For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 
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laboratory experiments. Given the potential importance of pine pollen 
grains in carbon sequestration and other science, further studies are 
required to fully understand their corresponding roles. On the other 
hand, pollen grains can add additional difficulty in remote sensing of 
marine debris during the pollination season. 

Notations 

R Reflectance (dimensionless) 
Rrc Reflectance after Rayleigh Correction (dimensionless) 
Rw Reflectance of pollen-free water, often derived from pixels 

near the pollen slicks 
ΔR Reflectance difference between pollen-containing and pollen- 

free water pixels (dimensionless) 
χ Subpixel pollen coverage (%), also called areal density 
MERIS Medium Resolution Imaging Spectrometer (2002− 2012) 
OLCI Ocean and Land Color Instrument (2016 – present on Sentinel- 

3A, 2018 – present on Sentinel-3B) 
VIIRS Visible Infrared Imaging Radiometer Suite (2011 – present on 

SNPP) 
MODIS Moderate Resolution Imaging Spectroradiometer (2000 – 

present on Terra, 2002 – present on Aqua) 
MSI MultiSpectral Instrument (2015 – present on Sentinel-2A, 

2018 – present on Sentinel-2B). 
SAM Spectral Angle Mapper (0o – 90o), an index to measure the 

similarity of spectral shapes between two reflectance vectors. 
SAM = 0o indicates identical spectral shapes, while SAM =
90o indicates completely different spectral shapes 

NIR Near infrared 
SWIR Shortwave infrared 
FRGB False-color Red-Green-Blue, where an NIR band is used in the 

green channel. 
OCView Ocean Color Viewer, an online image visualization tool 

developed by the U.S. NOAA (https://www.star.nesdis.noaa. 
gov/socd/mecb/color/ocview/ocview.html) 
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Mélin, F., Zibordi, G., 2010. Vicarious calibration of satellite ocean color sensors at two 
coastal sites. Appl. Opt. 49 (5), 798–810. 

C. Hu et al.                                                                                                                                                                                                                                       

https://www.star.nesdis.noaa.gov/socd/mecb/color/ocview/ocview.html
https://www.star.nesdis.noaa.gov/socd/mecb/color/ocview/ocview.html
https://oceancolor.gsfc.nasa.gov
https://www.star.nesdis.noaa.gov/socd/mecb/color/ocview/ocview.html
https://www.star.nesdis.noaa.gov/socd/mecb/color/ocview/ocview.html
https://doi.org/10.1016/j.rse.2022.113337
https://doi.org/10.1016/j.rse.2022.113337
https://doi.org/10.1371/journal.pone.0111712
https://doi.org/10.1073/pnas.2013284118
https://doi.org/10.1073/pnas.2013284118
https://doi.org/10.1146/annurev-marine-010213-135135
http://refhub.elsevier.com/S0034-4257(22)00443-6/rf202210310819133018
http://refhub.elsevier.com/S0034-4257(22)00443-6/rf202210310819133018
https://doi.org/10.1029/2010GL043227
http://refhub.elsevier.com/S0034-4257(22)00443-6/rf202210310812329504
http://refhub.elsevier.com/S0034-4257(22)00443-6/rf202210310812329504
http://refhub.elsevier.com/S0034-4257(22)00443-6/rf202210310812329504
https://doi.org/10.3390/rs13224619
https://doi.org/10.3390/rs13224619
https://doi.org/10.1029/2020JC016411
https://doi.org/10.1029/2020JC016411
http://refhub.elsevier.com/S0034-4257(22)00443-6/rf202210310813110526
http://refhub.elsevier.com/S0034-4257(22)00443-6/rf202210310813110526
https://doi.org/10.1016/j.rse.2021.112414
https://doi.org/10.1016/j.marpolbul.2022.114082
https://doi.org/10.1016/j.marpolbul.2022.114082
https://doi.org/10.1016/j.rse.2021.112842
https://doi.org/10.1016/j.rse.2021.112842
https://doi.org/10.5194/bg-13-1009-2016
https://doi.org/10.1016/j.hal.2019.101739
https://doi.org/10.5697/oc.52-2.171
http://refhub.elsevier.com/S0034-4257(22)00443-6/rf202210310817221996
http://refhub.elsevier.com/S0034-4257(22)00443-6/rf202210310817221996
http://refhub.elsevier.com/S0034-4257(22)00443-6/rf202210310817221996
http://refhub.elsevier.com/S0034-4257(22)00443-6/rf202210310817221996
https://doi.org/10.1002/lno.11974
https://doi.org/10.1016/j.rse.2020.111778
https://doi.org/10.1016/j.rse.2020.111778
http://refhub.elsevier.com/S0034-4257(22)00443-6/rf202210310820205445
http://refhub.elsevier.com/S0034-4257(22)00443-6/rf202210310820205445


Remote Sensing of Environment 284 (2023) 113337

14

Miettinen, A., Rinne-Garmston, J.T., Haila, H., Hyvarinen, H., 2002. The marine Eemain 
of the Baltic: new pollen and diatom data from Peski, Russia, and Põhja-Uhtju, 
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